On self-repelling walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 173335
(http://iopscience.iop.org/0305-4470/17/17/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:49

Please note that terms and conditions apply.

On self-repelling walks

C Byrnes and A J Guttmann
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, New South Wales, Australia 2308

Received 15 May 1984, in final form 9 July 1984

Abstract

We investigate the properties of self-repelling walks-otherwise known as 'true' self-avoiding walks-in both one and two dimensions for a range of values of the repulsion parameter $g, 0.2 \leqslant g \leqslant 10.0$. In one dimension we have obtained 24 terms of the generating function of the mean-square end-to-end distance $\left\langle R_{N}^{2}\right\rangle$, while on the two-dimensional square lattice we have obtained 12-15 terms. In one dimension we find the data to be well fitted by $\left\langle R_{N}^{2}\right\rangle=N^{4 / 3}\left(A+B / N^{1 / 3}+C / N+O(1 / N)\right)$ and in two dimensions by $\left\langle R_{N}^{2}\right\rangle=$ $D N|\ln N|^{\alpha}(1+O(\ln |\ln N| / \ln N))$ with $\alpha \approx 0.5$. Estimates of the amplitudes A and D are also obtained.

1. Introduction

A new and interesting variation of self-avoiding walks was recently proposed by Amit et al (1983). This variation was named the 'true' self-avoiding walk (TSAW) to distinguish it from the usual self-avoiding walk (SAW). We consider this name quite inappropriate on the semantic grounds that anything called a 'true' self-avoiding walk has a moral obligation to be self avoiding. In fact, tsaws may recross themselves with non-zero probability, unlike saws, which are truly self avoiding. Accordingly, we suggest the name 'self-repelling walk' (SRw) as semantically appropriate.

On a d-dimensional hypercubic lattice an SRW may visit any site i adjacent to its current end point with probability p_{i}, which depends on the number of times site i has been visited previously, denoted n_{i}, and the repulsion $g>0$, through the relation

$$
\begin{equation*}
p_{i}=\exp \left(-g n_{i}\right)\left(\sum_{i=1}^{2 d} \exp \left(-g n_{i}\right)\right)^{-1} \tag{1.1}
\end{equation*}
$$

The probability of a given walk is just the product of the probabilities of the N steps. Like the sAW problem, the sRW problem is also a non-Markovian process.

Note too that all $(2 d)^{N} N$-step pure random walks are possible (with varying probability) so that the chain generating function (CGF) is just $C(x)=1 /(1-2 d x)$, a rather uninteresting quantity. Weighting each sRw by its probability just modifies this quantity to give the even less interesting result for the weighted CGF $C_{\mathrm{w}}(x)=1 /(1-x)$.

In one dimension, the parameter g effectively interpolates between the saw $(g=\infty)$ and the pure random walks ($g=0$). The interpolation is discontinuous as the critical exponents are those appropriate to sRws for finite g and become saw-like only for $g=\infty$. In higher dimensions, however, the $g \rightarrow \infty$ limit does not correspond to saws as is demonstrated explicitly by Amit et al, though of course $g=0$ still corresponds to the pure random walk.

Amit et al also showed that the critical dimensionality of this model is $d_{c}=2$, quite different from the result $d_{c}=4$ which holds for SAws. A renormalisation group (RG) calculation gave

$$
\left\langle R_{N}^{2}\right\rangle \sim A N(\ln N)^{0.4}(1+B \ln |\ln N| / \ln N) \quad \text { for } d=d_{\mathrm{c}}=2
$$

A Monte Carlo study of two-dimensional SRws for $g=0.1,0.3$ and 1.0 supported this form.

In dimensions below the critical dimension Amit et al do not derive critical exponents, but from their results $\beta=-\frac{1}{2} \varepsilon u+\frac{5}{4} u^{2}, u^{*}=\frac{2}{5} \varepsilon$ and $\gamma=\frac{1}{2} u^{*}=\frac{1}{5} \varepsilon$ one may conclude $\left\langle R_{N}^{2}\right\rangle \sim N^{6 \varepsilon / 5}$ or

$$
\left\langle R_{N}^{2}\right\rangle \sim N^{6 / 5}
$$

to first order in ε for $\varepsilon=d=1$. Subsequently Pietronero (1983) advanced a Flory-type argument that yielded $\nu=\frac{1}{2}$ for $d \geqslant d_{\mathrm{c}}=2$ and $\nu=2 /(2+d)$ for $d<2$ when ν is the exponent characterising $\left\langle R_{N}^{2}\right\rangle$ through $\left\langle R_{N}^{2}\right\rangle \sim N^{2 \nu}$. Pietronero argued that this result is inapplicable at $d=1, g=\infty$ for which $\nu=1$ holds. Subsequently Obukhov (1984) argued from a small-g expansion that Pietronero's result holds explicitly at $d=1$, giving $\nu=\frac{2}{3}$ for $0<g<\infty$.

More recently, Rammal et al (1984) have carried out a Monte Carlo study on the one-dimensional SRW problem and find $\nu \approx \frac{2}{3}$. They also consider the case $g<0$ and find a saturation effect so that $\lim _{N \rightarrow \infty}\left(R_{N}^{2}\right\rangle=R_{x}^{2}(g)<\infty$ for $g<0$ (this case could be called the self-attracting walk). de Queiroz et al (1984) considered the crossover behaviour as $g \rightarrow 0$ and $g \rightarrow \infty$. From a real-space RG analysis they provide convincing evidence of a value for ν different from both the SAW and random-walk values, and constant for $0<g<\infty$.

Since the completion of this work we have received a preprint from Stella et al (1984) who generate series expansions for one-dimensional sRws and find $\nu=0.67 \pm 0.04$, in agreement with both Monte Carlo results and our results. Another recent paper by Family and Daoud (1984) provides a Flory theory for sRws, yielding $\nu=2 /(d+2)$ for $d \leqslant d_{\mathrm{c}}=2$, and argues that the SRW models the statistics of a linear polymer in a polydispersed solution.

In this paper we have studied the sRw in both one and two dimensions by generating series expansions for $\left\langle R_{N}^{2}\right\rangle$ for $N \leqslant 24(d=1)$ and $N \leqslant 15(d=2)$ for $0.2 \leqslant g \leqslant 10.0$.

2. One-dimensional results

In table 1 we show the coefficients $\left\langle R_{N}^{2}\right\rangle$ for $1 \leqslant N \leqslant 24$ for several values of g in the range $0.2 \leqslant g \leqslant 10.0$. For large g, it is clear that $\left\langle R_{N}^{2}\right\rangle \approx N^{2}$, and the maximum value of N we have used ($N_{\max }=24$) is far too small for asymptotic behaviour to be evident. Indeed, the Monte Carlo results of Rammal et al show that, for $g=10$, deviations from $\left\langle R_{N}^{2}\right\rangle \sim N^{2}$ require $N \geqslant 500$ in order to be evident. Thus our analysis will focus on lower values of g, which we restrict to $g \leqslant 2.0$. The heuristic arguments of Amit et $a l$, while giving the wrong exponent, do suggest that the correct form for $\left\langle R_{N}^{2}\right\rangle$ should contain at least two terms, one corresponding to the random-walk behaviour ($\propto N$) appropriate to $g=0$ and the other $\left(\propto N^{4 / 3}\right)$ appropriate to $g>0$. Accordingly we write

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \sim N^{4 / 3}\left(A+B / N^{1 / 3}+C / N+D / N^{4 / 3}+\ldots\right) . \tag{2.1}
\end{equation*}
$$

Table 1. Mean-square end-to-end distances for one-dimensional self-repelling walks.

N	$g=0.2$	$g=0.5$	$g=\ln 2$	$g=1.0$	$g=2.0$	$g=5.0$	$g=10.0$
1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
2	2.19934	2.48984	2.66667	2.92423	3.52319	3.97323	3.99982
3	3.41854	4.09965	4.55556	5.27557	7.20643	8.89327	8.99927
4	4.77703	6.01795	6.84444	8.16708	11.98134	15.74737	15.99827
5	6.16214	8.06862	9.35161	11.42518	24.71501	24.52257	24.99673
6	7.65766	10.36441	12.18831	15.14939	24.39441	35.20655	35.99455
7	9.17883	12.76553	15.18974	19.15081	31.87956	47.78643	48.99165
8	10.79473	15.38219	18.47933	23.54609	40.16359	62.25002	63.98793
9	12.43374	18.08886	21.91276	28.18309	49.13339	78.58464	80.98330
10	14.15705	20.98433	25.59365	33.15540	58.79055	96.77827	99.97767
11	15.90154	23.96355	29.40773	38.34456	69.03724	116.81837	120.97095
12	17.72231	27.10998	33.44057	43.83054	79.88429	138.69318	143.96306
13	19.56305	30.33493	37.59538	49.51095	91.24487	162.39027	168.95389
14	21.47359	33.71136	41.94861	55.45976	103.13694	187.89810	195.94336
15	23.40328	37.16123	46.41462	61.58710	115.48283	215.20441	224.93138
16	25.39745	40.75030	51.06207	67.95782	128.30324	244.29781	255.91785
17	27.41013	44.40859	55.81532	74.49450	141.52945	275.16623	288.90268
18	29.48289	48.19580	60.73584	81.25504	155.18503	307.79849	323.88580
19	31.57357	52.04877	65.75603	88.16961	169.20595	342.18262	360.86713
20	33.72066	56.02198	70.93190	95.29234	183.61909	378.30768	399.84650
21	35.88514	60.05791	76.20187	102.55888	198.36496	416.16187	440.82391
22	38.10287	64.20672	81.61778	110.01993	213.47105	455.73441	48379922
23	40.33752	68.41549	87.12286	117.61620	228.88298	497.01358	528.77234
24	42.62269	72.73083	92.76548	125.39508	244.62860	539.98889	575.74323

By fitting our data to the form (2.1) we find a consistent picture emerges. To be precise, we have solved (2.1) first by truncating at the $\mathrm{O}\left(N^{-1}\right)$ and then at the $\mathrm{O}\left(N^{-4 / 3}\right)$ term. In order to remove the characteristic odd-even oscillation of hypercubic lattice data, we have transformed our series using the transformation (Watts 1974) $z=20 x /(9 x+11)$ where x is the expansion variable in the original generating function $R^{2}(x)=$ $\Sigma_{N>0}\left\langle R_{N}^{2}\right\rangle x^{N}$. This transformation maps the critical point $x_{\mathrm{c}}=1$ to $z_{\mathrm{c}}=1$, but maps the 'antiferromagnetic' critical point $x=-1$ to $z=-10$, far enough away from the radius of convergence that its effect is negligible. After transformation, we denote the transformed quantity by

$$
\begin{equation*}
\left\langle\tilde{R}_{N}^{2}\right\rangle=N^{4 / 3}\left(\tilde{A}+\tilde{B} / N^{1 / 3}+\tilde{C} / N+\tilde{D} / N^{4 / 3}+\ldots\right) \tag{2.2}
\end{equation*}
$$

where $\tilde{A}=A(0.55)^{2 \nu+1}=0.24784 A$.
We find that truncating the series (2.2) after the term \tilde{C} / N gives a very satisfactory fit. The next term, $\tilde{D} / N^{4 / 3}$, in fact slightly improves the quality of the fit, while not significantly changing the leading amplitude \tilde{A}. In table 2 we show the results of our analysis for a representative value of $g, g=\ln 2$, where successive triplets of terms from the transformed series $\left\langle\tilde{R}_{N}^{2}\right\rangle,\left\langle\tilde{R}_{N-1}^{2}\right\rangle$ and $\left\langle\tilde{R}_{N-2}^{2}\right\rangle$ are used to find \tilde{A}, \tilde{B} and \tilde{C} in (2.2), and successive quadruplets of terms are used to fit to $\tilde{A}, \tilde{B}, \tilde{C}$ and \tilde{D}.

We have extrapolated the sequence of estimates for the leading amplitude \tilde{A} for all values of g used, and find the results for A shown in table 3. Our estimates encompass both sets of results shown in table 2. Because the amplitudes of the

Table 2. Results of fitting the transformed data of table 1 to the form $(2.2)(g=\ln 2)$.

\boldsymbol{N}	\tilde{A}	\tilde{B}	\tilde{C}	\tilde{A}	\tilde{B}	\tilde{C}	\tilde{D}
10	0.4322	-0.4000	0.6728	0.4931	-0.6532	1.7653	-1.1339
11	0.4412	-0.4286	0.7155	0.5005	-0.6840	1.8984	-1.2720
12	0.4490	-0.4543	0.7566	0.5064	-0.7094	2.0158	-1.3983
13	0.4559	-0.4775	0.7958	0.5111	-0.7304	2.1196	-1.5135
14	0.4619	-0.4984	0.8334	0.5150	-0.7482	2.2129	-1.6203
15	0.4672	-0.5174	0.8693	0.5183	-0.7636	2.2975	-1.7197
16	0.4719	-0.5348	0.9037	0.5210	-0.7767	2.3740	-1.8117
17	0.4762	-0.5506	0.9366	0.5233	-0.7881	2.4427	-1.8964
18	0.4800	-0.5652	0.9680	0.5252	-0.7978	2.5044	-1.9741
19	0.4834	-0.5786	0.9982	0.5269	-0.8061	2.5595	-2.0448
20	0.4866	-0.5910	1.0270	0.5282	-0.8132	2.6082	-2.1087
21	0.4894	-0.6024	1.0546	0.5293	-0.8192	2.6509	-2.1655
22	0.4920	-0.6130	1.0810	0.5302	-0.8242	2.6874	-2.2152
23	0.4943	-0.6228	1.1063	0.5310	-0.8282	2.7180	-2.2573
24	0.4965	-0.6319	1.1304	0.5315	-0.8313	2.7426	-2.2917

Table 3. Leading amplitudes for one-dimensional self-repelling walks.

g	A
0.2	0.18 ± 0.03
0.5	0.42 ± 0.03
$\ln 2$	0.54 ± 0.05
1.0	0.72 ± 0.06
2.0	1.3 ± 0.3

correction terms depend significantly on the set of results used in table 2-that is, on whether we are fitting to three or four parameters in (2.2)—we provide no estimate for these amplitudes. However it is clear from our analysis that \tilde{B} is (algebraically) decreasing as g increases, while the behaviour of \tilde{C} is not monotonic in g.

We have also investigated an alternative form to (2.1) and (2.2) in which we include an additional term proportional to $N^{-2 / 3}$. This reflects the possibility that, if there is a 'correction-to-scaling' exponent $\Delta_{1}=\frac{1}{3}$, then there is a second 'correction-to-scaling' exponent of $\Delta_{2}=\frac{2}{3}$. That is, we assume that

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle / N^{4 / 3}=\sum_{k \geqslant 0} a_{k} / N^{k / 3} . \tag{2.3}
\end{equation*}
$$

The apparent convergence of the amplitudes a_{k} is found to be somewhat less rapid and consistent than that obtained from the assumed form (2.1) and (2.2). Under this alternative assumption the leading amplitude is between 1% and 10% higher than that given in table 3, for different values of g, though in all cases within the error limits quoted.

Thus we conclude that we cannot unequivocally distinguish between (2.1) and (2.3), though the analysis favours (2.1) somewhat. In either event, table 3 contains estimates of the critical amplitudes.

Table 4. Mean square end-to-end distances for two-dimensional self-repelling walks.

\boldsymbol{N}	$g=0.2$	$g=0.5$	$g=\ln 2$	$g=1.0$	$g=2.0$	$g=5.0$	$g=10.0$
1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
2	2.09494	2.21820	2.28571	2.37538	2.55156	2.66069	2.66663
3	3.19438	3.46020	3.61224	3.82122	4.25523	4.53964	4.55545
4	4.34239	4.80191	5.06302	5.42316	6.18863	6.71093	6.74054
5	5.49456	6.16164	6.54137	7.06589	8.18616	8.95595	8.99970
6	6.67841	7.58379	8.09674	8.80429	10.31890	11.36773	11.42758
7	7.86541	9.01775	9.66906	10.56596	12.48086	13.79740	13.87192
8	9.07574	10.49674	11.29653	12.39552	14.73854	16.34957	16.44062
9	10.28848	11.98410	12.93577	14.24095	17.01581	18.91114	19.01734
10	11.51958	13.50633	14.61740	16.13801	19.36341	21.56127	21.68408
11	12.75261	15.03505	16.30812	18.04737	21.72704	24.22264	24.36130
12	14.00071	16.59199	18.03293	19.99791	24.14579	26.95235	27.10790
13	15.25042	18.15427					29.86422
14	16.51287	19.74013				32.67856	
15		21.33053					

3. Two-dimensional results

In table 4 we show our data for $\left\langle R_{N}^{2}\right\rangle$ for the two-dimensional series for $1 \leqslant N \leqslant 15$ and $0.2 \leqslant g \leqslant 10$. The RG calculations of Amit et al suggested asymptotic behaviour of the form

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \sim N(\ln N)^{a}(D+E \ln |\ln N| / \ln N) \tag{3.1}
\end{equation*}
$$

with $\alpha=0.4$. Subsequently Obukhov and Peliti (1983) disputed this result on the grounds that the calculation of Amit et al assumed that only one coupling constant needed renormalisation in order to remove all infinities in the perturbation theory, while they found that at least two and possibly three coupling constants are involved. As a consequence, with two coupling constants involved, they found $\alpha=1.0$. They also make the point that this value of α will manifest itself earlier-that is for lower N values-the larger the value of g. Indeed, for $g=\infty$ Amit et al did extract a small number of walks in their Monte Carlo study which better fitted the form $\left\langle R_{N}^{2}\right\rangle \sim N \ln N$.

We have investigated this disagreement by analysing our series data as discussed below. Note however that the correction term in (3.1) is very slowly varying, and is essentially undetectable by series analysis methods with our range of N values. As N ranges from 10 to 20 , the correction term ranges from $0.362 E$ to $0.366 E$. Thus we expect an 'effective' amplitude of ($D+0.36 E$).

To estimate α, we first form the sequence

$$
\begin{equation*}
s_{N}=\left\{\ln \left[\left(\left\langle R_{N}^{2}\right\rangle / N\right) /\left(\left\langle R_{N-2}^{2}\right\rangle /(N-2)\right)\right]\right\} / \ln (\ln N / \ln (N-2)) . \tag{3.2}
\end{equation*}
$$

If $\left\langle R_{N}^{2}\right\rangle \sim D N(\ln N)^{\alpha}$, then $s_{N} \sim \alpha$. The sequence $\left\{s_{N}\right\}$ is defined using alternate terms in $\left\langle R_{N}^{2}\right\rangle$ in order to accommodate the oscillation discussed previously, and the sequence $\left\{t_{N}\right\}$ and $\left\{u_{N}\right\}$, defined by

$$
\begin{align*}
& t_{N}=\frac{1}{2}\left[N s_{N}-(N-2) s_{N-2}\right] \\
& u_{N}=\left[N^{2} t_{N}-(N-2)^{2} t_{N-2}\right] /(4 N-4) \tag{3.3}
\end{align*}
$$

Table 5. Direct estimates $\left(s_{N}\right)$, linear (t_{N}) and quadratic (u_{N}) extrapolants of the confluent logarithmic exponent α for two-dimensional self-repelling walks.

$\mathrm{g}=0.2$				$g=0.5$			$g=1$			$g=5$			$g=10$		
N	s_{N}	t_{N}	u_{N}												
6	0.097	0.189		0.201	0.374		0.308	0.543		0.474	0.752		0.477	0.756	
7	0.117	0.204		0.234	0.385		0.347	0.535		0.504	0.660		0.507	0.660	
8	0.128	0.219	0.258	0.251	0.401	0.436	0.365	0.537	0.529	0.509	0.613	0.434	0.511	0.611	0.425
9	0.142	0.228	0.266	0.272	0.407	0.441	0.388	0.533	0.530	0.527	0.605	0.521	0.528	0.604	0.517
10	0.150	0.239	0.274	0.284	0.416	0.443	0.399	0.515	0.531	0.525	0.592	0.555	0.527	0.590	0.533
11	0.161	0.245	0.279	0.299	0.419	0.444	0.414	0.531	0.528	0.536	0.580	0.529	0.537	0.579	0.528
12	0.167	0.252	0.283	0.308	0.426	0.447	0.422	0.533	0.530	0.536	0.590	0.583	0.537	0.589	0.587
13	0.175	0.257	0.287	0.319	0.427	0.448							0.544	0.577	0.574
14	0.181	0.263	0.291	0.325	0.432	0.450							0.544	0.586	0.576
15				0.334	0.433	0.450									

extropolate alternate s_{N} 's against $1 / N$ and $1 / N^{2}$, in the usual manner of the ratio method. These sequences are shown in table 5, and it can be seen that for $g=0.2$ a rapidly increasing sequence of estimates suggests $\alpha>0.3$. For $g=0.5$ the rate of increase has substantially declined, and supports $\alpha \geqslant 0.45$. For $g=1$ the estimates are quite steady around $\alpha \approx 0.53$, while for $g=5$ and $g=10$ the estimates are generally decreasing, suggesting $\alpha \leqslant 0.6$. Thus for all values of g we have used we find consistent evidence of $\alpha \approx \frac{1}{2}$. This is much closer to the result of Amit et al ($\alpha=0.4$) than that of Obukhov and Peliti ($\alpha=1.0$). It can of course be argued that our series are short, with $N_{\text {max }}=15$, and that asymptotic behaviour only manifests itself for larger values of N. Such an objection is entirely valid, but not totally convincing. Firstly, it would be surprising if all values of g pointed to the same (erroneous) value of α, and it is the case that a value of $\alpha \approx \frac{1}{2}$ is indicated by all the series. Secondly, for the self-avoiding walk at the critical dimension ($d=d_{c}=4$), a similar number of terms has been shown to be adequate (Guttmann 1978) to determine the correct confluent logarithmic exponent.

It seems worthwhile to conduct a thorough Monte Carlo analysis in order to resolve this point. For intermediate values of g, that is $g \approx 1$, the Monte Carlo data of Amit et al with step size up to $N \approx 2^{14} \approx 16000$ favours $\alpha=0.4$ over $\alpha=1.0$, so clearly very large values of N indeed will be needed if this value of α is incorrect. (However, Obukhov and Peliti reanalyse the data of Amit et al at $g=10$ and find support for $\alpha=1.0$.)

We have also estimated the effective critical amplitude by forming the sequence $D_{N}=\left\langle R_{N}^{2}\right\rangle / N(\ln N)^{\alpha}$ with $\alpha=0.5$. Extrapolating alternate terms in the sequence $\left\{D_{N}\right\}$ both linearly and quadratically against $1 / N$, as was done to estimate α, we find the following values of the effective amplitude: $0.62(g=0.2), 0.81(g=0.5), 0.90$ $(g=\ln 2), 1.04(g=1.0), 1.4(g=5)$ and $1.4(g=10.0)$. These values depend on the value of α, and included possibly substantial contributions from slowly varying correction terms, so their values should not be uncritically accepted. The trend of increasing amplitude with increasing g value, approaching a positive asymptote as $g \rightarrow \infty$, is likely to be correct however. From the Monte Carlo plots of Amit et al, which assume $\alpha=0.4$, we find for the amplitudes $0.43(g=0.1), 0.61(g=0.3)$ and $1.05(g=1.0)$ in reasonable agreement with our own results. Note that natural logarithms are used throughout this paper, whereas some workers use $\log _{2}$.

4. Conclusion

We find that the mean-square lengths of one-dimensional SRws are well fitted by (2.1) which implies a correction-to-scaling exponent of $\Delta=\frac{1}{3}$ for all g. The critical amplitude A is found to be an increasing function of g, and we see that A / g is a decreasing function of g, within the range of g values used. This is consistent with the 'small-g' approximation of Obukhov (1984) who gives $A \sim g^{2 / 3}$ for small g. An alternative form for $\left\langle R_{N}^{2}\right\rangle$ is given by (2.3), and it is found that this does not fit the data quite as well as (2.1), but does not significantly alter the amplitude estimates.

For two-dimensional SRws we find that the mean-square lengths are well fitted by (3.1), with confluent logarithmic exponent $\alpha \approx 0.5$, in reasonable agreement with the earlier work of Amit et al, rather than the later theory of Obukhov and Peliti. The qualitative behaviour of the critical amplitude is the same as that for one-dimensional walks discussed above.

Acknowledgments

We would like to thank R Dekeyser, who has obtained two-dimensional data extending ours, and whose analysis thereof supports our conclusion. P Duxbury kindly sent preprints of his work, and S G Whittington gave helpful comments. Finally, we wish to acknowledge the comments of the referees, which resulted in a significantly improved manuscript.

References

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 271635
Family F and Daoud M 1984 Phys. Rev. B 291506
Guttmann A J 1978 J. Phys. A: Math. Gen. 11 L103
Obukhov S P 1984 J. Phys. A: Math. Gen. 17 L7
Obukhov S P and Peliti L 1983 J. Phys. A: Math. Gen. 16 L147
Pietronero L 1983 Phys. Rev. B 275887
de Queiroz S L A, Stella A L and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 17 L45
Rammal R, Angles d'Auriac J C and Benatt A 1984 J. Phys. A: Math. Gen. 17 L9
Stella A L, de Queiroz S L A, Duxbury P M and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 171903
Watts M G 1974 J. Phys. A: Math. Nucl. Gen. 7489

