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Abstract. We investigate the properties of self-repelling walks-otherwise known as ‘true’ 
self-avoiding walks-in both one and two dimensions for a range of values of the repulsion 
parameter g, 0.2 < g c 10.0. In one dimension we have obtained 24 terms of the generating 
function of the mean-square end-to-end distance ( R L ) ,  while on the two-dimensional 
square lattice we have obtained 12-15 terms. In one dimension we find the data to be well 
fitted by ( R L ) =  N 4 / 3 ( A + B / N ‘ / 3 + C / N + 0 ( 1 / N ) )  and in two dimensions by ( R L ) =  
DNlln NI“( I +O(lnjln Nl/ln N ) )  with a ;=0.5. Estimates of the amplitudes A and D are 
also obtained. 

1. Introduction 

A new and interesting variation of self-avoiding walks was recently proposed by Amit 
et a1 (1983). This variation was named the ‘true’ self-avoiding walk (TSAW) to 
distinguish it from the usual self-avoiding walk (SAW). We consider this name quite 
inappropriate on the semantic grounds that anything called a ‘ frue’ self-auoiding walk 
has a moral obligation to be self avoiding. In fact, TSAWS may recross themselves with 
non-zero probability, unlike SAWS, which are truly self avoiding. Accordingly, we 
suggest the name ‘self-repelling walk’ ( SRW) as semantically appropriate. 

On a d-dimensional hypercubic lattice an SRW may visit any site i adjacent to its 
current end point with probability p i ,  which depends on the number of times site i has 
been visited previously, denoted n, and the repulsion g > 0, through the relation 

The probability of a given walk is just the product of the probabilities of the N steps. 
Like the SAW problem, the SRW problem is also a non-Markovian process. 

Note too that all ( 2 d ) N  N-step pure random walks are possible (with varying 
probability) so that the chain generating function (CGF) is just C ( x )  = 1 / (  1 -2dx), a 
rather uninteresting quantity. Weighting each SRW by its probability just modifies this 
quantity to give the even less interesting result for the weighted CGF C,(x) = 1 / (  1 - x).  

In one dimension, the parameter g effectively interpolates between the SAW ( g  = CC) 

and the pure random walks ( g  = 0). The interpolation is discontinuous as the critical 
exponents are those appropriate to SRWS for finite g and become sAw-like only for 
g = CO. In higher dimensions, however, the g + CC limit does nor correspond to SAWS as 
is demonstrated explicitly by Amit er ai, though of course g = 0 still corresponds to 
the pure random walk. 
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Amit et a1 also showed that the critical dimensionality of this model is d ,  = 2, quite 
different from the result d ,  = 4 which holds for SAWS. A renormalisation group (RG) 

calculation gave 

( R L )  - AN(1n N)0,4( 1 + B ln/ln Nl/ln N)  for d = d , = 2 .  

A Monte Carlo study of two-dimensional SRWS for g = 0.1, 0.3 and 1.0 supported this 
form. 

In dimensions below the critical dimension Amit er a1 do not derive critical 
exponents, but from their results p = - ;&U +:u2, U* = + E  and y = t u *  = ; E  one may 
conclude ( R L ) -  NbEr5 or 

(Ric) - N6i5 

to first order in E for E = d = 1 .  Subsequently Pietronero ( 1983) advanced a Flory-type 
argument that yielded v = for d 3 d ,  = 2 and v = 2/(2 + d )  for d < 2 when v is the 
exponent characterising ( R L )  through ( R L )  - N2”. Pietronero argued that this result 
is inapplicable at d = 1, g =a for which v = 1 holds. Subsequently Obukhov (1984) 
argued from a small-g expansion that Pietronero’s result holds explicitly at d = 1, 
giving v = :  for O < g < a .  

More recently, Rammal et a1 (1984) have carried out a Monte Carlo study on the 
one-dimensional SRW problem and find v ==$ They also consider the case g < 0 and 
find a saturation effect so that hV+= (R;.) = R2-g) <cc for g < 0 (this case could be 
called the self-attracting walk). de Queiroz er a1 (1984) considered the crossover 
behaviour as g + 0 and g + cc. From a real-space RG analysis they provide convincing 
evidence of a value for v different from both the SAW and random-walk values, and 
constant for 0 < g < E .  

Since the completion of this work we have received a preprint from Stella er a1 
( 1984) who generate series expansions for one-dimensional SRWS and find v = 0.67 * 0.04, 
in agreement with both Monte Carlo results and our results. Another recent paper by 
Family and Daoud ( 1984) provides a Flory theory for SRWS, yielding v = 2 / (  d + 2) for 
d s  d , = 2 ,  and argues that the SRW models the statistics of a linear polymer in a 
polydispersed solution. 

In this paper we have studied the SRW in both one and two dimensions by generating 
series expansions for ( R L )  for N s 24 ( d  = 1) and N s 15 ( d  = 2 )  for 0.2 s g s 10.0. 

2. One-dimensional results 

In table 1 we show the coefficients ( R i . )  for 1 s N 6 24 for several values of g in the 
range 0.2 == g s 10.0. For large g, it is clear that ( R L )  = N’, and the maximum value 
of N we have used (N,,, = 24) is far too small for asymptotic behaviour to be evident. 
Indeed, the Monte Carlo results of Rammal et a1 show that, for g = 10, deviations 
from ( R i . )  - N 2  require N 3 500 in order to be evident. Thus our analysis will focus 
on lower values of g, which we restrict to g s 2.0. The heuristic arguments of Amit et 
al, while giving the wrong exponent, do suggest that the correct form for ( R L )  should 
contain at least two terms, one corresponding to the random-walk behaviour (a N )  
appropriate to g = 0 and the other (a N4’3) appropriate to g > 0. Accordingly we write 

( R L ) -  N4’3(A + C / N  +D/N4’3 +...).  (2.1) 



On sev-repelling walks 3337 

Table 1. Mean-square end-to-end distances for one-dimensional self-repelling walks. 

~ ~ ~ 

N g = 0 2  g = 0.5 g = I n 2  g =  1.0 g = 2.0 g = 5.0 g = 10.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 .ooo 00 
2.199 34 
3.418 54 
4.777 03 
6.162 14 
7.657 66 
9.178 83 

10.794 73 
12.433 74 
14.157 05 
15.901 54 
17.722 3 I 
19.563 05 
2 1.473 59 
23.403 28 
25.397 45 
27.410 13 
29.482 89 
31.573 57 
33.720 66 
35.885 14 
38.102 87 
40.337 52 
42.622 69 

1.000 00 
2.489 84 
4.099 65 
6.01795 
8.068 62 

10.364 41 
12.765 53 
15.382 19 
18.088 86 
20.984 33 
23.963 55 
27.109 98 
30.334 93 
33.71 1 36 
37.161 23 
40.750 30 
44.408 59 
48.195 80 
52.048 77 
56.021 98 
60.057 91 
64.206 72 
68.415 49 
72.730 83 

1.000 00 
2.666 67 
4.555 56 
6.844 44 
9.351 61 

12.188 31 
15.1 89 74 
18.479 33 
21.91276 
25.593 65 
29.407 73 
33.440 57 
37.595 38 
41.94861 
46.414 62 
5 1.062 07 
55.815 32 
60.735 84 
65.756 03 
70.931 90 
76.201 87 
81.61778 
81.1’2 86 
92.765 48 

I.000 00 
2.924 23 
5.275 57 
8. I67 08 

11.425 18 
15.149 39 
19.15081 
23.546 09 
28. I83 09 
33. I55 40 
38.344 56 
43.830 54 
49.51095 
55.459 76 
61.587 I O  
67.957 82 
74.494 50 
81.255 04 
88.16961 
95.292 34 

102.558 88 
110.019 93 
117.616 20 
125.395 08 

1 .ooo 00 
3.523 19 
7.206 43 

11.981 34 
24.715 01 
24.394 41 
3 1.879 56 
40. I63 59 
49.133 39 
58.790 55 
69.037 24 
79.884 29 
9 1.244 87 

103.13694 
115.482 83 
128.303 24 
141.52945 
155.185 03 
169.205 95 
183.619 09 
198.364 96 
213.471 05 
228.882 98 
244.628 60 

I.000 00 
3.973 23 
8.893 21 

15.747 37 
24.522 57 
35.206 55 
47.786 43 
62.250 02 
78.584 64 
96.778 27 

116.81837 
138.693 18 
162.390 27 
187.898 10 
215.20441 
244.297 8 1 
275.166 23 
307.798 49 
342.182 62 
378.307 68 
416.161 87 
455.734 41 
497.013 58 
539.988 89 

1.000 00 
3.999 82 
8.999 27 

15.998 27 
24.996 73 
35.994 55 
48.991 65 
63.987 93 
80.983 30 
99.977 67 

120.970 95 
143.963 06 
168.953 89 
195.943 36 
224.93 1 38 
255.917 85 
288.902 68 
323.885 80 
360.867 13 
399.846 50 
440.823 91 
483 799 22 
528.772 34 
575.743 23 

By fitting our data to the form ( 2 . 1 )  we find a consistent picture emerges. To be precise, 
we have solved (2.1) first by truncating at the O( N - ’ )  and then at the O(N-4/3)  term. 
In order to remove the characteristic odd-even oscillation of hypercubic lattice data, 
we have transformed our series using the transformation (Watts 1974) z = 2Ox/(9x + 11) 
where x is the expansion variable in the original generating function R 2 ( x ) =  
2 ’ N , 0 ( R & ) ~ N .  This transformation maps the critical point x c =  1 to z c =  1 ,  but maps 
the ‘antiferromagnetic’ critical point x = - 1 to z = -10, far enough away from the 
radius of convergence that its effect is negligible. After transformation, we denote the 
transformed quantity by 

( k k )  = N413(A + E /  NI”+ c/ N +fi/N413 +. . .) 

where 2 = A(0.55)2”+’ = 0.247 84A. 
We find that truncating the series (2.2) after the term e/ N gives a very satisfactory 

fit. The next term, 6/N413, in fact slightly improves the quality of the fit, while not 
significantly changing the leading amplitude A. In table 2 we show the results of our 
analysis for a representative va!ue of g, g = In 2 ,  where successive triplets of terms from 
the transformed series (k’,), ( R k - , )  and (k2h;-2) are used to find A, in (2.2), 
and successive quadruplets of terms are used to fit to 2, g, and d. 

for 
all values of g used, and find the results for A shown in table 3 .  Our estimates 
encompass both sets of results shown in table 2. Because the amplitudes of the 

and 

We have extrapolated the sequence of estimates for the leading amplitude 
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Table 2. Results of fitting the transformed data of table 1 to the form (2.2) (g =In 2). 

I O  0.4322 
11 0.4412 
12 0.4490 
13 0.4559 
14 0.4619 
15 0.4672 
I6 0.4719 
17 0.4762 
18 0.4800 
19 0.4834 
20 0.4866 
21 0.4894 
22 0.4920 
23 0.4943 
24 0.4965 

d E 

-0.4000 0.6728 
-0.4286 0.7155 
-0.4543 0.7566 
-0.4775 0.7958 
-0.4984 0.8334 
-0.5 174 0.8693 
-0.5348 0.9037 
-0.5506 0.9366 
-0.5652 0.9680 
-0.5786 0.9982 
-0.5910 1.0270 
-0.6024 1.0546 
-0.6130 1.0810 
-0.6228 I .  IO63 
-0.6319 1.1304 

A d 
~~~ 

0.493 I -0.6532 
0.5005 -0.6840 
0.5064 -0.7094 
0.5 I 1 1 -0.7304 
0.5150 -0.7482 
0.5183 -0.7636 
0.5210 -0.7767 
0.5233 -0.7881 
0.5252 -0.7978 
0.5269 -0.8061 
0.5282 -0.8132 
0.5293 -0.8192 
0.5302 -0.8242 
0.5310 -0.8282 
0.5315 -0.8313 

1.7653 
1.8984 
2.0158 
2.1 196 
2.2 129 
2.2975 
2.3740 
2.4427 
2.5044 
2.5595 
2.6082 
2.6509 
2.6874 
2.7180 
2.7426 

- 1.1339 
-1.2720 
- 1.3983 
-1.5135 
- 1.6203 
- 1.7197 
-1.81 17 
- 1.8964 
-1.9741 
-2.0448 
-2.1087 
-2.1655 
-2.2152 
-2.2573 
-2.29 17 

~~ ~ 

Table 3. Leading amplitudes for one-dimensional self-repelling walks. 

0.2 0.18 * 0.03 
0.5 0.42 * 0.03 
In 2 0.54* 0.05 
1 .o 0.72 * 0.06 
2.0 1.310.3 

correction terms depend significantly on the set of results used in table 2-that is, on 
whether we are fitting to three or four parameters in (2.2)-we provide no estimate 
for these amplitudes. However it is clear from our analysis that is (algebraically) 
decreasing as g increases, while the behaviour of 2. is not monotonic in g. 

We have also investigated an alternative form to (2.1) and (2.2) in which we include 
an additional term proportional to N - 2 / 3 .  This reflects the possibility that, if there is 
a ‘correction-to-scaling’ exponent A ,  = f, then there is a second ‘correction-to-scaling’ 
exponent of A2 = f .  That is, we assume that 

( R L ) / N 4 I 3 =  a k / N k I 3 .  
k a O  

The apparent convergence of the amplitudes ak is found to be somewhat less rapid 
and consistent than that obtained from the assumed form (2.1) and (2.2). Under this 
alternative assumption the leading amplitude is between 1 % and 10% higher than that 
given in table 3, for different values of g, though in all cases within the error limits 
quoted. 

Thus we conclude that we cannot unequivocally distinguish between (2.1) and 
(2.3), though the analysis favours (2.1) somewhat. In either event, table 3 contains 
estimates of the critical amplitudes. 
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Table 4. Mean square end-to-end distances for two-dimensional self-repelling walks. 

N g = 0.2 g = 0.5 g = l n  2 g = 1.0 g =2.0 g =5.0 g = 10.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 

1.000 00 
2.094 94 
3.19438 
4.342 39 
5.494 56 
6.678 41 
7.865 41 
9.075 74 

10.288 48 
11.519 58 
12.752 61 
14.000 7 1 
15.250 42 
16.512 87 

I.000 00 
2.2 I8 20 
3.460 20 
4.801 91 
6.161 64 
7.583 79 
9.017 75 

10.496 74 
11.984 10 
13.506 33 
15.035 05 
16.591 99 
18.154 27 
19.740 13 
21.33053 

1 .ooo 00 
2.285 71 
3.612 24 
5.063 02 
6.541 37 
8.096 74 
9.669 06 

I 1.296 53 
12.935 77 
14.617 40 
16.308 12 
18.032 93 

1 .ooo 00 
2.375 38 
3.821 22 
5.423 16 
7.065 89 
8.804 29 

10.565 96 
12.395 52 
14.240 95 
16.138 01 
18.047 37 
19.997 9 1 

1 .ooo 00 
2.551 56 
4.255 23 
6.188 63 
8.186 16 

10.31890 
12.480 86 
14.738 54 
17.01581 
19.363 41 
2 I .727 04 
24.145 79 

1.000 00 
2.660 69 
4.539 64 
6.71093 
8.955 95 

1 1.367 73 
13.797 40 
16.349 57 
18.911 14 
21.561 27 
24.222 64 
26.952 35 

1.000 00 
2.666 63 
4.555 45 
6.740 54 
8.999 70 

I 1.427 58 
13.871 92 
16.440 62 
19.017 34 
2 1.684 08 
24.361 30 
27.107 90 
29.864 22 
32.678 56 

3. Two-dimensional results 

In table 4 we show our data for (RL) for the two-dimensional series for 1 s N s  15 
and 0.2 S g s 10. The RG calculations of Amit er a f  suggested asymptotic behaviour 
of the form 

(RL)-N( ln  N ) " ( D + E  lnlln Nl/ln N )  (3.1) 

with a =0.4. Subsequently Obukhov and Peliti (1983) disputed this result on the 
grounds that the calculation of Amit et a1 assumed that only one coupling constant 
needed renormalisation in order to remove all infinities in the perturbation theory, 
while they found that at least two and possibly three coupling constants are involved. 
As a consequence, with two coupling constants involved, they found a = 1.0. They 
also make the point that this value of a will manifest itself earlier-that is for lower 
N values-the larger the value of g. Indeed, for g = ~3 Amit er a1 did extract a small 
number of walks in their Monte Carlo study which better fitted the form (RL) - N In N. 

We have investigated this disagreement by analysing our series data as discussed 
below. Note however that the correction term in (3.1) is very slowly varying, and is 
essentially undetectable by series analysis methods with our range of N values. As N 
ranges from 10 to 20, the correction term ranges from 0.3628 to 0.3668. Thus we 
expect an 'effective' amplitude of ( D  +0.368).  

To estimate a, we first form the sequence 

SN = {ln[((RL)/N)/((R2,-,)/(N -2))l}/ln(ln N/ ln (N  -2)). (3.2) 

If (RL) - DN(1n N ) " ,  then sN - a. The sequence {sN} is defined using alternate terms 
in ( R L )  in order to accommodate the oscillation discussed previously, and the sequence 
{ f N }  and { u N } ,  defined by 
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extropolate alternate sN’s against 1 /N and 1/N2,  in the usual manner of the ratio 
method. These sequences are shown in table 5 ,  and it can be seen that for g = 0.2 a 
rapidly increasing sequence of estimates suggests a > 0.3. For g = 0.5 the rate of 
increase has substantially declined, and supports (Y 2 0.45. For g = 1 the estimates are 
quite steady around a L- 0.53, while for g = 5 and g = 10 the estimates are generally 
decreasing, suggesting (Y s 0.6. Thus for all values of g we have used we find consistent 
evidence of (Y - i. This is much closer to the result of Amit et a1 ( a  = 0.4) than that 
of Obukhov and Peliti ( a  = 1.0). It can of course be argued that our series are short, 
with N,,, = 15, and that asymptotic behaviour only manifests itself for larger values 
of N. Such an objection is entirely valid, but not totally convincing. Firstly, it would 
be surprising if all values of g pointed to the same (erroneous) value of a, and it is 
the case that a value of a -$is indicated by all the series. Secondly, for the self-avoiding 
walk at the critical dimension ( d  = d,  = 4), a similar number of terms has been shown 
to be adequate (Guttmann 1978) to determine the correct confluent logarithmic 
exponent. 

It seems worthwhile to conduct a thorough Monte Carlo analysis in order to resolve 
this point. For intermediate values of g,  that is g -  1, the Monte Carlo data of Amit 
et a1 with step size up to N - 214 L- 16 000 favours (Y = 0.4 over cy = 1 .O, so clearly very 
large values of N indeed will be needed if this value of cy is incorrect. (However, 
Obukhov and Peliti reanalyse the data of Amit er a1 at g = 10 and find support for 
a = 1.0.) 

We have also estimated the effective critical amplitude by forming the sequence 
DN = ( R % ) /  N(ln N)* with (Y = 0.5. Extrapolating alternate terms in the sequence 
{ D N }  both linearly and quadratically against 1/ N, as was done to estimate a, we find 
the following values of the effective amplitude: 0.62 (g=O.2), 0.81 ( g = O . 5 ) ,  0.90 
( g  =In 2), 1.04 ( g  = l.O), 1.4 ( g  = 5 )  and 1.4 ( g  = 10.0). These values depend on the 
value of a, and included possibly substantial contributions from slowly varying correc- 
tion terms, so their values should not be uncritically accepted. The trend of increasing 
amplitude with increasing g value, approaching a positive asymptote as g + a, is likely 
to be correct however. From the Monte Carlo plots of Amit er al, which assume a = 0.4, 
we find for the amplitudes 0.43 ( g  = O.l), 0.61 ( g  = 0.3) and 1.05 ( g  = 1 .O) in reasonable 
agreement with our own results. Note that natural logarithms are used throughout this 
paper, whereas some workers use log,. 

4. Conclusion 

We find that the mean-square lengths of one-dimensional SRWS are well fitted by (2.1) 
which implies a correction-to-scaling exponent of A = for all g. The critical amplitude 
A is found to be an increasing function of g, and we see that A / g  is a decreasing 
function of g, within the range of g values used. This is consistent with the ‘small-g’ 
approxixnation of Obukhov (1984) who gives A - g2’3 for small g. An alternative form 
for ( R L )  is given by (2.3), and it is found that this does not fit the data quite as well 
as (2.1), but does not significantly alter the amplitude estimates. 

For two-dimensional SRWS we find that the mean-square lengths are well fitted by 
(3.1), with confluent logarithmic exponent a L- 0.5, in reasonable agreement with the 
earlier work of Amit et  al, rather than the later theory of Obukhov and Peliti. The 
qualitative behaviour of the critical amplitude is the same as that for one-dimensional 
walks discussed above. 



3342 C Byrnes and A J Guttmann 

Acknowledgments 

We would like to thank R Dekeyser, who has obtained two-dimensional data extending 
ours, and whose analysis thereof supports our conclusion. P Duxbury kindly sent 
preprints of his work, and S G Whittington gave helpful comments. Finally, we wish 
to acknowledge the comments of the referees, which resulted in a significantly improved 
manuscript. 

References 

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 27 1635 
Family F and Daoud M 1984 Phys. Rev. B 29 1506 
Guttmann A J 1978 J. Phys. A: Math. Gen. 11 L103 
Obukhov S P 1984 J. Phys. A: Math. Gen. 17 L7 
Obukhov S P and Peliti L 1983 J. Phys. A: Math. Gen. 16 L147 
Pietronero L 1983 Phys. Reo. B 27 5887 
de Queiroz S L A, Stella A L and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 17 L45 
Rammal R, Angles d’Auriac J C and Benatt A 1984 J. Phys. A: Math. Gen. 17 L9 
Stella A L, d e  Queiroz S L A, Duxbury P M and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 17 1903 
Watts M G 1974 J. Phys. A: Math. Nucl. Gen. 7 489 


